Химическая энциклопедия
Главная - Химическая энциклопедия - буква Г - ГЕМОГЛОБИН |
ГЕМОГЛОБИН
(от греч. haima- кровь и лат. globus-шар), осн. белок
дыхат. цикла, участвующий в переносе О2 от органов дыхания к
тканям, а в обратном направлении - СО2. Содержится в эритроцитах
крови почти всех позвоночных и гемолимфе большинства беспозвоночных животных.
Г. позвоночных (мол. м. 6,4*104-6,6*104) состоят
из четырех попарно идентичных субъединиц (их обозначают греч. буквами;
теми же буквами обозначают входящие в состав субъединиц полипептидные цепи,
а также гены, кодирующие эти цепи). Каждая субъединица имеет белковую глобиновую
часть, состоящую из 140-160 аминокислотных остатков, с к-рой нековалентно
связан гем-ферропрото-порфирин (см. ф-лу).
Ф-цию переноса О2 у нек-рых видов беспозвоночных выполняют крупные гемсодержащие белки-эритрокруорины (мол. м. 0,4*106-6,7*106), состоящие из 30-400 субъединиц, и хлоркруорины (мол. м. 3,4*106), состоящие из 190 субъединиц. Эти белки способны обратимо связывать одну молекулу О2 на группу тема, т.е. на субъединицу. Переносчиком О2 у др. видов беспозвоночных служат негемовые белки, состоящие из 8-10 субъединиц,— медьсодержащие гемоцианины (мол. м. 0,05*107*107) и железосодержащие гемэритрины (мол. м. 1*105). Каждая субъединица таких белков содержит два атома металла (соотв. Сu + и Fe2 +), способных связать одну молекулу О2. Г. взрослого человека (НbА) имеет мол. м. 6,49*104 и принадлежит
к числу наиб. изученных белков. Его форма в р-ре близка к эллипсоиду с
осями 6,4, 5,5 и 5,0 нм; изоэлектрич. точка 6,9. Тетрамер НЬА состоит из
двух и двухсубъединиц,
их полипептидные цепи содержат соотв. 141 и 146 аминокислотных остатков.
Известны первичная структура обеих цепей, а также пространств. структура
оксигенированной, дезоксигенированной, ряда лигандированных, а также окисленной
формы (содержит Fe3 +) НbА. Пространств. структура
субъединиц (рис. 1) характеризуется наличием восьмиспиральных
участков, включающих около 80% аминокислотных остатков, и внутр. полости
-гемового кармана. Фиксирование тема в субъединице осуществляется в результате
гидрофобных взаимод. пиррольных и винильных групп тема с алифатич. и ароматич.
боковыми радикалами аминокислот, выстилающими полость кармана, а также
благодаря координационной связи (направлена перпендикулярно к плоскости
кольца тема) Fe2+ с аксиальным лигандом-имидазольной группой
гистидина (т. наз. проксимальный гистидин). При оксигенации молекула О2
занимает шестое вакантное место в координационной сфере Fe2+.
Связывание происходит обратимо, без окисления железа, с образованием стабильного
оксигенированного комплекса НbО2. Одна молекула Г. способна
присоединить 4 молекулы О2-по одной на группу тема.
Рис. 1. Схема упаковки поли-пептидной цеписубъединицы гемоглобина. Точками обозначены положенияС атомов аминокислотных остатков; 1 -гем; 2-проксимальный остаток гистидина.
Субъединицы и прочно удерживаются в составе тетрамера Г. множественными ван-дер-ваальсовыми взаимод. и водородными связями; дезоксигенированная форма НbА стабилизирована кроме того неск. ионными связями внутри и между субъединицами. Тетрамер Г.-кооперативная структура, в к-рой существует взаимод. пространственно разобщенных между собой групп (т. наз. гем-гем взаимодействие). Это проявляется в облегчении присоединения к тетрамеру последующих молекул О2 по мере протекания оксигенирования, что значительно увеличивает эффективность переноса О2 при физиол. условиях по сравнению с мономерными Г. и миоглобином (белок, депонирующий О2 в мышцах). Присоединение О2 к молекуле Г. сопровождается значит. конформационными перестройками пространств. структуры субъединиц и тетрамера в целом. Сродство Г. к О2 является основным физ.-хим. показателем
функциональных св-в Г.; его принято характеризовать зависимостью степени
оксигенирования Г. от парциального давления кислорода
(кислородно-диссоционная кривая, или КДК, рис. 2), а также величиной,
при к-рой достигается оксигенирование 50% Г. (р50)- Нормальная
величина р50 НbА в крови при физиол. условиях [37 °С, парциальное
давление СО2
40 мм рт. ст., рН 7,4] составляет 26-28 мм рт. ст. Сигмоидный характер
КДК отражает кооперативный характер оксигенирования. При существующем у
человека различии артериальной и венозной крови (соотв. 90 ± 10 и 40 ±
2 мм рт. ст.) 1 л крови, насыщенной в легких кислородом (92-98% Г. находится
в форме НbО2), отдает в тканях ок. 45 мл О2, при
этом содержание НbО2 в венозной крови составляет 70-75%.
Рис. 2. Зависимость содержания оксигемоглобина от парциального давления О2. Из клеток тканей СО2 диффундирует через плазму крови в эритроциты, где гидратируется в р-ции, катализируемой ферментом карбоангидразой:
Гидрокарбонат-ионы в эритроцитах замещаются далее на ионы Cl- из плазмы, сами переходят в плазму и переносятся ею к легким. Определенная часть СО2 связывается в эритроцитах с N-концевымиаминогруппами Г. с образованием остатка карбаминовой к-ты, уменьшая сродство Г. к О2. Увеличение РСО2 т-ры, ионной силы р-ра и уменьшение рН снижают сродство Г. к О2. Важнейший внутриэритроцитарный регулятор сродства - анионы 2,3-дифосфоглицериновой к-ты. Увеличение их концентрации также уменьшает сродство Г. к О2. Снижение сродства при уменьшении рН в интервале 9-6 наз. щелочным эффектом Бора, к-рый обусловлен существованием равновесия: Этот эффект вносит значит. вклад в поддержание постоянного значения рН крови и освобождение О2 в тканях соотв. уровню обмена в-в [увеличение концентрации СО2 сдвигает равновесие р-ций (1) и (2) вправо]. В легких, где рСО2 составляет 40 мм рт. ст., процессы, описываемые р-циями (1) и (2), идут в обратном направлении, в результате чего СО2, находящийся в растворенном и связанном с Г. состоянии, освобождается, Г. оксигенируется и дыхат. цикл завершается. У человека на разных этапах развития организма обнаружено несколько Г., различающихся составляющими их субъединицами. На ранних стадиях эмбрионального развития у зародыша обнаруживаются Г. строения,, . На более поздних стадиях появляется и доминирует к моменту рождения HbF (; т. наз. фетальный Г.). Св-ва эмбриональных Г. обеспечивают выполнение кисло-родтранспортной ф-ции в специфич. условиях внутриутробной жизни. В эритроцитах взрослого человека содержится в норме 95-97% НЬА , начинающего преобладать через 2-3 месяца после рождения, и 2-3% НbА2 Первичные структуры иполипептидных цепей Г. человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующиеглобиновые цепи Г. человека, сцеплены и расположены в последовательности на хромосоме 16 (цифры-номера дуплицированных генов); группа генов, кодирующих др. полипептидные цепи, также непосредственно примыкающие один к другому, локализована на хромосоме 11. Первичная структураи неглобиновых генов человека известна. Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов. Биосинтез тема, иглобиновых цепей, а также сборка тетрамерных молекул НbА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120-130 дней) из костного мозга в кровяное русло. Точковые мутации в экзонах глобиновых генов могут вести к появлению мутантных Г. с единичной аминокислотной заменой. Это м. б. причиной молекулярных болезней — наследств. гемоглобинопатий. наиб. известный пример мутантного Г.- HbS, в к-ром шестой от N-концаглобиновой цепи остаток глутаминовой к-ты заменен на остаток валина. Такой Г. содержится в эритроцитах больных серповидноклеточной анемией. Точечная мутация, делеция (выпадение участка ДНК) или другой дефект глобинового гена, локализованный вне экзонов, может уменьшить продукцию глобиновых цепей в эритроцитах, нарушить сбалансированный биосинтезицепей и привести к др. распространенной разновидности гемоглобинопатий-талассемии. Лит.: Уайт А., Хендлер Ф., Смит Э., Основы биохимии, пер. с англ.,
т. 3, М, 1981, с. 1218-66; Bunn Н. F., Forget В. G., Ranney Н. М, Нетоglobinopathies,
Phil.- L.- Toronto, 1977; Human hemoglobins and hemoglobinopathies, "Texas
Reports on Biology and Medicine", 1980-1981, v. 40; Atlas of molecular
structures in bioldgy, ed. by D.C. Philips, P.M. Richards, v. 2, Haemoglobin
and myoglobin, ed. by G. Fermi and M.F. Perutz, Oxf., 1981; Methods in
enzymology, v. 76-Hemoglobins, N. Y.- L.- [a. o.], 1981. B.A. Спивак.
|